Symbolsk utregning med Python#

Bruk av CAS (Computer Algebra System)#

from sympy import *
#init_printing()
x, y = symbols('x y')
uttrykk = x + 2*y*x
factor(uttrykk)
../../_images/94c2f9fe33d1388355a47146d9aa63f2437f7cdfd1004c748e9fe210c073cb3f.png
solve(x**2 - 4, x)
../../_images/3aff927d63a6e3c93e2c4a61a4b3f21effdddd245605bd350e4163c10d385035.png
diff(uttrykk, x)
../../_images/daeb17ce851038e810aa2a1b6296077606aaa758ff99eef3022274f4ece16c33.png
uttrykk2 = 4*x**3
integrate(uttrykk2, x)
../../_images/39ea426fc352573126488e864c8b0ebd75441af6d3936af43db0e59e57f08477.png
integrate(cos(x**2), (x, -oo, oo))
../../_images/5abc60c96f99a25cc98066ad1f312b7835dc738ebfed3057e2fdc5e72cf2ecd2.png
limit(sin(x)/x, x, 0)
../../_images/72a546dbb6f3802c0e27bbc4af98acd50fca310880673b7534dfb5f7634d258f.png

Vi løser difflikninga \(y′′−y=e^t\):

y = Function('y')
difflikning = Eq(y(t).diff(t, t) - y(t), exp(t))
dsolve(difflikning, y(t))
../../_images/cd0d66aaa4d3e8988cd1bf8eb35b49c9bde267a532141d4faedf712b76ee3a10.png
y = Function('y')
difflikning2 = Eq(y(t).diff(t), y(t))
dsolve(difflikning2, y(t))
../../_images/b68520cfa5062b14874ebd8891ffc876cf461c4c3e2b1ad168354eb59b39178e.png
Integral(cos(x)**2, (x, 0, pi))
../../_images/e3b044678a198ff422e03b78b374d92d057e4621ecf387fa0561201cda422134.png
Limit(cos(x)/x, x, 0)
../../_images/e8f85a964f55e4a0819ba3cc84a30df071a500b24205ca6cb0578e8b5d9b6ada.png